Central Serous Chorioretinopathy (CSC) and the Pachychoroidal Disease Spectrum

Ramana S. Moorthy, MD FACS
Founding Partner – Associated Vitreoretinal and Uveitis Consultants
Associate Clinical Professor of Ophthalmology
Indiana University Medical Center
Indianapolis, Indiana
Poll Question 1

• What is the average thickness of normal subfoveal choroid measured using SD-OCT?

A. 150 microns
B. 250 microns
C. 320 microns
D. 400 microns
Anatomy

Anatomy
Poll Question 2

• In pachychoroidal diseases, which OCT layer is effaced or absent?
 A. Sattler layer
 B. Haller layer
 C. Nerve fiber layer
 D. Bruchs membrane / RPE complex
Pachychoroidal Diseases

- Abnormal and permanent increase in choroidal thickness
 - Larger Haller layer vessels apposed to Bruchs membrane complex and medium vessels of Sattler layer absent or effaced

- Why does this happen?
 - Choroidal vascular congestion?
 - Thickened sclera
 - Lengthened intrascleral course of vortex veins
 - Physiologic Factors
 - Excess choroidal interstitial fluid
 - Precapillary arteriolar hypertension
 - Altered intravascular osmolality (serum proteins (albumin))
 - Pharmacologic agents: Corticosteroids, PDE inhibitors
 - Alterations in interstitial tissues in the choroid

Poll Question 3

• Pachychoroid disease spectrum includes which of the following diseases?

A. Central Serous Chorioretinopathy
B. Polypoidal Choroidal Vasculopathy
C. Pachychoroid Pigment Epitheliopathy
D. All of the Above
Pachychoroidal Diseases

• Spectrum of Disease
 – Pachychoroid Pigment epitheliopathy
 – Central Serous Chorioretinopathy (CSC)
 • Acute
 • Chronic
 – Pachychoroid Neovasculopathy
 • Polypoidal Choroidal Vasculopathy
 • Other entities?

Pachychoroid Pigment Epitheliopathy (PPE)

- Variable appearance from Forme Fruste of CSC to Chronic CSC
- Orange red fundus appearance
 - Absence of normal fundus tessellation
 - RPE changes mistaken for ARMD or pattern dystrophy
- OCT scattered RPE elevations, small serous PEDs, thick choroid
- ICG shows mid-phase hyperfluorescence suggestive of hyperpermeability
- Fundus Autofluorescence shows granular hypoautofluorescence and stippled mixed areas of hyper and hypoautofluorescence

PPE
CSC

• Demographics
 – 3rd to 6th decades
 – M>F
 – Personality ?, Exogenous corticosteroid exposure

• Symptoms
 – Metamorphopsia, micropsia, scotoma

• Signs
 – Serous PED(s)
 – Localized serous retinal detachment in posterior pole
 – RPE disruption
CSC

• What’s new?
 – Ideas about pathogenesis
 • Imaging – OCT, FAF, ICG
 – Treatment
CSC Pathophysiology

Choriodal exudate PED
CSC

• Pathogenesis
 – Role of Choroid
 • Hyperpermeable in CSC
 – Stasis, Ischemia, Inflammation (Wyman GJ, AJO. 1963;55:1265)
 – Evidence
 » Staining of inner choroid on ICG (Spaide et al, Retina. 1996 16:203-213 and others)
 – Increased tissue hydrostatic pressure → RPED → SRF
CSC – Choroidal Hyperpermeability
CSC

• Pathogenesis
 – Role of Choroid
 • Thickened – EDI OCT (Imamura et al., Retina. 2009:29:1469-1473)
 – Normal thickness of subfoveal choroid – 250 microns
 – In CSC – thickness of subfoveal choroid – 320 microns
 – Does not correspond to the areas of staining on ICG
 – May be the result of corticosteroid induced increased vascular permeability and secondary sympathomimetic induced impaired choroidal autoregulation
CSC

• Pathogenesis
 – Role of Choroid
 • Choroidal lobular ischemia on ICG (Okushiba et al., NGGZ. 1997;101:74-82.)
 • Increased amplitudes of pulsatile choroidal blood flow.(Tittle et al. Arch Ophthalmol, 2003; 121:975-8)
CSC

• Pathogenesis
 – RPE
 • Probably secondary to choroidal changes
 • RPE abnormalities present in asymptomatic fellow eyes on OCT (Gupta et al. Int Ophthalmol. 2010;30:175-181)
 • Focal RPE defects – which way is flow of fluid
 – Response to focal laser in active cases
 – Still not well understood
CSC

• Pathogenesis
 – Hormonal factors
 • Endogenous cortisol elevated in CSC (Garg et al. BJO. 1997; 81: 962-4)
 • Exogenous corticosteroids
 – Exacerbate CSC – recognized since 1966
 – Haimovici et al – definitively established relationship as risk factor for CSR exacerbation (Ophthalmology. 2004; 111: 244-9)
 – Affect choroid
 » Increased adrenergic receptor transcription
 • Impaired vascular autoregulation
 – Affect Bruch’s Membrane
 » Inhibit collagen synthesis
 – Affect RPE
 » Altered water and ionic transport
 » Impair barrier function
 – Interestingly local corticosteroids (topicals, regional) appear not to make CSR worse
CSC

• Pathogenesis
 – *Helicobacter pylori* Infection
 • Associated with thrombotic disease
 • Molecular mimicry – immune mediated damage to choroidal endothelial cells
 • French study found 40% of CSC patients vs. 25% of the general population had *H. pylori* infection in gut (Ahnoux-Zabsonre et al. J. Fr. Ophthalmol. 2004;27:1129-1133)
 – Not confirmed in other studies
 • Treatment did reduce time for SRF resorption but no effect on visual outcomes (Rahbani-Nobar et al. Mol Vis. 2011;17:99-103)
CSC

• Pathogenesis
 – Genetics
 • Weenink et al. 52% of families of chronic CSC patients had CSC like pathology (Ophthalmologica. 2001;215:183-7)
 • Higher prevalence in whites, Hispanics, and Asians than in African Americans
 – Cytokine analysis (Shin et al. Retina. 2011;31:1937-43)
 • VEGF not elevated in CSR
 • IL-6, IL-8, others not elevated
CSC

• Insights from Imaging

 – OCT

 • EDI – Choroidal thickening

 – CSC – 368 microns vs Normal – 242 microns

 – Reduced by 20% after PDT

CSC

• Insights from Imaging
 – OCT
 • Outer nuclear layer thinning correlates with VA
 – 74 microns Va<20/20; 105 microns Va>20/20
 – 125 microns for age matched controls
 • Elongation of photoreceptor outer segments
CSC

- **Insights from Imaging**
 - **OCT**
 - White precipitates – hyperreflective deposits in the retina and in subretinal space with subretinal fluid
 - Etiology unknown – macrophages with OS?
 - RPED near areas of leak on FA with detectable RPE breach
CSC

OCT

• All areas of leak have hyperreflective material “spewing out” into subretinal space
CSC
CSC

OCT Image

Scanned Image
CSC
CSC

- Insights from Imaging
 - OCT
 - Foveal thinning even after subretinal fluid resolution in chronic CSC and correlates with Va
CSC

• Fundus Autofluorescence (FAF)
 – Acute CSC – can be normal
 – Hyperautofluorescence
 • In area of subretinal fluid over months
 • Accumulates at margins of subretinal fluid
 • White retinal precipitates - Macrophages with OS?
 • Accumulation of shed OS from serous retinal detachment
CSC

- Fundus Autofluorescence
 - Hypoautofluorescence
 - Diffuse retinal pigment epitheliopathy (DRPE)
 - Granular, confluent, and descending tracts
 - Can be dramatic: large flask shaped areas extending from disc and or macula to the dependent inferior retina
 - RPE atrophy and outer retinal atrophy
 - Chronic CSC
CSC

• Multifocal ERG
 – Corresponds to local disease activity but can also demonstrate more widespread retinal dysfunction

• Microperimetry
 – Reduced retinal sensitivity in areas of RPE irregularity and Ellipsoid Zone disruption

CSC

- Adaptive Optics
 - Cone density decreased in CSC even if Ellipsoid Zone intact and Va≥20/20.
 - 42380 in CSC vs 67900 in controls
 - Underscores the subclinical functional loss after each episode of CSC
Poll Question 4

• The quality of evidence for therapeutic efficacy is best for which method of therapy for recurrent CSC?

A. Diode micropulse laser
B. Systemic eplerenone
C. Photodynamic therapy
D. Systemic anti-glucocorticosteroids
CSC

• Treatment
 – Observation – (Quality of Evidence (QOE) – Fair)
 • Most cases of acute CSC resolve in 1-4 months
 • Longer duration more permanent loss of cones
CSC

• Treatment
 – Risk Factor Modification
 • Discontinue corticosteroids (QOE – Good)
 – Topical cutaneous creams, nasal sprays, systemic, regional injections
 • Reduce stress levels – Type A personalities (QOE – Fair)
 – 8 studies –
 – Physical exercise, mindfulness meditation, etc
 • Avoid 5-phosphodiesterase inhibitors (sildenafil, tadalafil)
 – Conflicting evidence of role in CSC
 • Avoid MDMA (Ecstasy) – can exacerbate CSR
CSC

- Helicobacter pylori treatment (QOE – Poor)
- Anti-glucocorticosteroids (QOE- Poor to Fair)
 - Ketoconazole - interferes with endogenous steroid production – Ineffective
 - Mifepristone – abortifacient and glucocorticoid receptor antagonist – mixed results
 - Finasteride – 5- alpha- reductase inhibitor reduces conversion of testosterone to DHT – used for BPH
 - Retrospective study of 23 patients (29 eyes) – after 3 months of use over 75% of patients had complete resolution of SRF and Va improved. 37.5% had recurrence of SRF with discontinuation of drug.
 - Clinical trial ?
 - Adrenergic blockade – beta blockers - ineffective
CSC

• Carbonic anhydrase inhibitors (QOE – poor)
 – 1 study showed more rapid resolution of SRF compared to controls in acute CSR

• Anti-VEGF agents (QOE – Poor)
 – Paucity of clinical trials, clinical heterogeneity, small sample sizes, short follow up
 – Hard to demonstrate positive clinical effect
 – PDT superior to ranibizumab in prospective clinical
CSC

• Laser Photocoagulation (QOE – Good)
 – 2 RCTs - Focal argon laser directly to leak site
 • Faster SRF resolution 6 weeks vs 16 weeks
 • No visual benefit
 • No reduction of recurrence
 – Many other case series with similar results for acute and recurrent CSC. No benefit in chronic CSC.
 – Rate of late CNV – around 10%
 – Best for well-defined extrafoveal foci of leakage
CSC

• Photodynamic therapy (QOE – Good)
 – Promotes resolution of SRF and prevents recurrences
 • RCT – half dose PDT vs Placebo
 – 37 of 39 (94%) eyes had no SRF at one year compared to 58% of controls
 – Va – improved or stable in 79% of eyes
 • RCT – Half dose PDT vs. 30%dose PDT
 – 131 patients – 1 year follow up showed
 » Half dose was superior to 30% dose
 • Resolution of SRF, FA leakage, and recurrence of SRF
 • Other studies – showed similar improvements
 • Risks
 – Foveal RPE atrophy worsening after PDT
 – Choroidal thinning after PDT
CSC
CSC

• Micropulse Diode Laser (MDL) (QOE – poor)
 – Chronic CSC –
 • 5 patients: all patients had resolution of SRF at 1 month
 – Bandello et al. IOVS. 2003;44: Abstract 4858
 – Acute CSC
 • RCT – MDL vs standard argon laser (12 eyes vs 3 eyes)
 – Faster visual acuity recovery
 – Better contrast sensitivity
 – No scotoma at site of laser application
 – Other studies of heterogenous patient mix, inadequate follow up, and varied outcome measures
CSC

- Mineralocorticoid Antagonists (QOE – Fair)
 - Aldosterone and Mineralocorticoid receptor (MR) play a role in choroidal hyperpermeability
 - Spironolactone – higher binding affinity to MR than eplerenone
 - Prospective study of 25mg BID for 12 weeks for CSC >3 months duration
 - RCT with crossover after 30 days for another 30 day period with 50mg QD
 - Both showed reduced SRF and CST and improved Va
CSC

- Mineralocorticoid Antagonists (QOE – Fair)
 - Eplerenone for Chronic CSC
 - Only case series and several retrospective studies
 - Some improvement in SRF and Va
 - Overall underwhelming evidence of efficacy and concern over side effects – 10%
 - Fatigue/malaise, reduced libido, gynecomastia (spir), nausea, leg cramps, thirst and dehydration, orthostatic hypotension, vomiting,
 - Pilot Prospective study
 - Reduction in SRF, trend of reduced choroidal thickening
 - All the studies used different dosing regimen
 - 25mg po qd for 1 week, then 50mg qd for remainder of 3 month trial
Chronic CSC - FAF
Chronic CSC - FAF

52 year old Asian woman with chronic CSC with incidental chronic resolved inferior peripheral serous RD
Chronic CSC
Chronic CSC
Chronic CSC
Chronic CSC
Chronic CSC
Persistent detachment > 6 mo
Pachychoroid Neovascularopathy

- Late Complication of PPE and Chronic CSC

- Characteristics:
 - OCT Findings of CSC and/or PPE
 - Type 1 sub RPE CNV
 - With or without subretinal fluid
 - OCT shows broad shallow elevation of RPE suggestive of CNV within Bruchs membrane – Type 1 CNV
 - ICG shows plaque like hyperfluorescence of type 1 CNV and hyperpermeability lesions
 - Eventually polypoidal choroidal vasculopathy may develop

Pachychoroid Neovasculopathy
Pachychoroid Neovasculopathy
Pachychoroid Neovasculopatathy
Pachychoroid Neovasculopathy
Pachychoroid Neovasculopathy
Focal Choroidal Excavation

- Focal Choroidal Excavation
 - Conforming Focal Choroidal Excavation
 - Non-Conforming Focal Choroidal Excavation

- Etiology: Why excavations?
 - Collapse of choroidal polyps
 - Spectrum of long-standing pachychoroidal disease

- Therapy
 - If non-conforming and subretinal fluid: anti-VEGF

- Complications?

References

