INCORPORATING GLAUCOMA CLINICAL TRIALS INTO CLINICAL DECISION MAKING
John T. Lind, MD, MS

- Associate Professor of Ophthalmology
- Medical School - Indiana University School of Medicine 2004
- Residency - Saint Louis University 2008
- Glaucoma Fellowship - Bascom Palmer Eye Institute 2009

- Director of Adult Clinical Ophthalmology
- Assistant Director of Medical Student Education
Conflict of Interest

I was an investigator (unfunded) in the OHTS3 and PTVT trials
Objectives

• Learn how to incorporate glaucoma clinical trials into everyday practice
• Analyze current glaucoma trial results and understand the main conclusions
Patient/Study Factors

– Does my patient mirror the study population
 - Do they have the same stage of glaucoma?
 - Are they similar to the patient demographics?
 - Does my patient have any circumstances that influence the decision?
 - Was the study designed to answer the question I want answered?
Comparing Studies

• Very difficult to draw good conclusions
• Study design is important
• Different standards of success

Methods
In this retrospective chart review study, we evaluated the baseline clinical characteristics and the 12-month outcomes of patients with mild to severe glaucoma who underwent implantation of two iStent inject devices with concomitant cataract surgery, at a single ophthalmology clinic. The primary outcomes included the intraocular pressure (IOP) and anti-glaucoma medication use. The secondary outcomes were complete success rate (IOP ≤ 18 mmHg without any anti-glaucoma medications) and qualified success rate (IOP ≤ 18 mmHg with or without anti-glaucoma medications). Changes in IOP and medications were evaluated using repeated measure ANOVA with significance set at p < 0.05.

Results
A total of 101 eyes of 61 patients were included with an average age of 68.5 ± 8.8 years. All eyes had moderate to severe glaucoma with the following subtypes: 56% primary open-angle, 18% primary closed-angle, 13% normal tension, 7% pseudoexfoliation, 5% pigmentary, and 1% congenital glaucoma. The preoperative IOP decreased significantly from 16.6 ± 4.0 mmHg to 14.3 ± 2.8 (p < 0.001), and the average anti-glaucoma medication use dropped by 53% at one-year follow-up (p < 0.001). Qualified and complete success rates were 90.1% and 38.6%, respectively. There were no intraoperative complications; however, eight eyes underwent secondary surgery for management of elevated IOP.
Ocular Hypertension Treatment Study

• Study Design
 – Original Study Question- “Does treatment of Ocular Hypertension prevent POAG?”
 – 1636 Patient randomized to medication versus observation
 – Baseline characteristics
 • 40-80yo, 56% Female, 70% Caucasian, 25% AA, 35% with FHx of Glaucoma, c/d 0.4, CCT 570
 • Normal 30-2 HVF, Normal ONH, IOP 24-32 in study eye (21-32 in fellow eye)
OHTS Results

– OHTS Phase 1- 44(4.4%)/104 (9.5%) patients developed glaucoma at five years in the treatment versus observation group

– OHTS Phase 2- 71/60 patients developed glaucoma in the original treatment versus observation group
Take Home Message from the OHTS

- Treatment reduced the conversion of OHTN to POAG by about 50% at 5 years. Number needed to treat was about 20.
- Treatment of high-risk individuals provides greatest benefit

<table>
<thead>
<tr>
<th>Risk Level</th>
<th>Untreated</th>
<th>Treated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Risk (<6%)</td>
<td>7%</td>
<td>4%</td>
</tr>
<tr>
<td>Moderate Risk (6-13%)</td>
<td>18%</td>
<td>8%</td>
</tr>
<tr>
<td>Severe Risk (>13%)</td>
<td>42%</td>
<td>19%</td>
</tr>
</tbody>
</table>

10 Year incidence of glaucoma in OHTS 2
Hot of the Presses- OHTS 3

- 46% of patients developed glaucoma (55% in African Americans)- Cumulative incidence
- 49.3% in the Observation group and 41.9% in the original treated group
- 25% of patients had visual field loss
- 3.2% had MD <-22 dB
- 8% had Tube or Trabeculectomy
- 70% were on topical medications
- Incidence increased from low, medium, or high risk tertiles from 32%, 48%, 60%
Other Messages from OHTS

• Risk Stratification with IOP is important in making treatment decisions.
• CCT “rediscovered” as a risk factor
• Cataract Extraction is a good IOP lowering surgery (at least for a few years)
• Important to confirm VF defects
• Glaucoma specialists are “really bad” at picking up disc hemorrhages
 — And disc hemorrhages are important
Selective Laser Trabeculoplasty versus eye drops for the first line treatment of ocular hypertension and glaucoma: LiGHT Trial

• 718 Eyes Randomized to medications versus selective laser trabeculoplasty

• Patient Inclusion Criteria
 – 18 years or older
 – OAG or OHTN
 – MD in better eye of > -12, and worse eye >-15
 – Excluded patient who had undergone intraocular surgery except CE >1 year prior

• Patient Demographics
 – Age 63yo
 – 77% OAG (17% Moderate or Severe), 23% OHTN
 – 70% Caucasian, 20% Black, 7% Asian
 – 55% Male
 – IOP-24 mm Hg
 – 6% pseudophakia
Treatment and Control

- 74% of patients in laser group only had one SLT
- Medication burden was significantly reduced in SLT group
- Both groups had >93% at target at 3 years
- Disease Progression was lower in the SLT group (3.8% versus 5.8%)
- Patient in eye drop group was more likely to have glaucoma surgery
Clinical Endpoints and visits

- VA, IOP and Visual Field were maintained in both groups at 3 years.
- Excluding the 2-week SLT visit, visit number were similar in both groups.
LiGHT Trial Adverse Events

- Ocular and Systemic events were similar between the two groups and generally transient and self limited.
Survival of Repeat SLT (Red) compared to initial SLT (Blue)
LiGHT take home points

• Patients should be offered Laser Trabeculoplasty as a primary therapy
• Patients with severe disease were less likely to be controlled in both the medication and laser groups
• Consider Repeat of SLT even if no prolonged effect from the first laser
• Laser Trabeculoplasty is a cost-effective alternative to drops
• Maybe do not need follow-up before 1 month
Zhongshan Angle Closure Prevention trial: ZAP Trial

- 889 Patient Single Site Prospective trial in which one eye received LPI and other eye did not
- 6-year trial
- Patient Inclusion Criteria
 - 50-70 yo
 - Primary Angle Closure Suspect (PACS) with >180 of appositional closure without OHTN (<22), synechiae or glaucomatous optic neuropathy
- Exclusion Criteria
 - >15 mm Hg rise in IOP with dilation or dark room provocation test

![Flowchart showing patient flow and outcomes](image_url)
Comparison of eyes

- Mild Hyperopia
- AL - 22.49
- c/d 0.4
Kaplan-Meier plot of endpoints

- 3 End Points
 - IOP >24 X2
 - > 1 clock hour PAS
 - AACG attack
Reach Primary Endpoint

- Incidence per 1000 eye years
 - IOP- 0.66 vs 1.11
 - PAS- 3.31 vs 6.64
 - AAC- 0.22 vs 1.11
Comparing eyes that did and did not reach endpoint

<table>
<thead>
<tr>
<th></th>
<th>Eyes that did reach endpoint, n=553</th>
<th>Eyes that did not reach endpoint, n=1723</th>
<th>Hazard ratio (95% CI)</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Univariate model</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Randomly assigned to laser peripheral iridotomy</td>
<td>34.5%</td>
<td>50.5%</td>
<td>0.53 (0.30-0.92)</td>
<td>0.024</td>
</tr>
<tr>
<td>Multivariate models</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age, years (per 1 year older)</td>
<td>60.9% (54-76)</td>
<td>59.25 (4.97)</td>
<td>1.07 (1.01-1.13)</td>
<td>0.015</td>
</tr>
<tr>
<td>Female (vs male)</td>
<td>81.8%</td>
<td>82.9%</td>
<td>1.11 (0.55-2.24)</td>
<td>0.765</td>
</tr>
<tr>
<td>Randomly assigned to laser peripheral iridotomy (vs control)</td>
<td>34.5%</td>
<td>50.5%</td>
<td>0.52 (0.30-0.91)</td>
<td>0.023</td>
</tr>
<tr>
<td>Baseline intraocular pressure, mm Hg (per 1 mm Hg increase)</td>
<td>15.76 (3.02)</td>
<td>15.06 (2.83)</td>
<td>1.09 (0.99-1.19)</td>
<td>0.075</td>
</tr>
<tr>
<td>Total angle width, score (per 1 score higher)</td>
<td>4.80 (2.37)</td>
<td>5.36 (2.38)</td>
<td>0.91 (0.82-1.02)</td>
<td>0.098</td>
</tr>
<tr>
<td>Limbal anterior chamber depth1, % (per 10% higher)</td>
<td>18.64 (8.41)</td>
<td>22.28 (7.57)</td>
<td>0.49 (0.34-0.71)</td>
<td><0.001</td>
</tr>
<tr>
<td>Central anterior chamber depth1, mm (per 1 mm deeper)</td>
<td>2.47 (0.24)</td>
<td>2.55 (0.22)</td>
<td>0.21 (0.06-0.72)</td>
<td>0.013</td>
</tr>
<tr>
<td>Lens thickness1, mm (per 1 mm thicker)</td>
<td>4.95 (0.37)</td>
<td>4.87 (0.32)</td>
<td>1.57 (0.65-3.79)</td>
<td>0.318</td>
</tr>
<tr>
<td>Dark room prone provocative test, mm Hg (per 1 mm Hg increase)</td>
<td>3.76 (3.39)</td>
<td>4.27 (2.97)</td>
<td>0.94 (0.86-1.03)</td>
<td>0.399</td>
</tr>
</tbody>
</table>

All values are mean (SD) unless stated otherwise. Multivariable Cox proportional hazards models include laser peripheral iridotomy, age, gender, baseline intraocular pressure, and variables of interest. *Total angle width was calculated by the sum of Shafer grading of all four quadrants (range from 0 to 16, larger number indicates wider angle). **Limbal anterior chamber depth was evaluated by modified van Herick grading. ***Central anterior chamber depth and lens thickness were measured by ultrasound A-scan.

Table 3: Baseline ocular biometrics and gonioscopic factors associated with endpoint at 72 months
Complications

<table>
<thead>
<tr>
<th></th>
<th>Laser peripheral iridotomy (n=889)</th>
<th>Control (n=889)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Immediately after laser peripheral iridotomy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Localised hyphema, n (%)</td>
<td>257 (29%)</td>
<td></td>
</tr>
<tr>
<td>Localised corneal burn, n (%)</td>
<td>1 (<1%)</td>
<td></td>
</tr>
<tr>
<td>Intraocular pressure ≥30 mm Hg, n (%)</td>
<td>6 (<1%)</td>
<td></td>
</tr>
<tr>
<td>72 months after laser peripheral iridotomy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corneal endothelium (cells per mm²), mean (SD)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Endothelial cell density</td>
<td>2470.51 (308.32)</td>
<td>2484.59 (306.21)</td>
</tr>
<tr>
<td>Change in endothelial cell density from baseline</td>
<td>-107.95 (152.24)</td>
<td>-93.20 (134.23)</td>
</tr>
<tr>
<td>Cataract Lens Opacity Classification System III, mean (SD)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nuclear opalescence</td>
<td>2.87 (0.78)</td>
<td>2.79 (0.69)</td>
</tr>
<tr>
<td>Nuclear colour</td>
<td>2.92 (0.79)</td>
<td>2.84 (0.71)</td>
</tr>
<tr>
<td>Cortical</td>
<td>0.78 (1.13)</td>
<td>0.81 (1.13)</td>
</tr>
<tr>
<td>Posterior subcapsular cataract</td>
<td>0.05 (0.41)</td>
<td>0.05 (0.40)</td>
</tr>
</tbody>
</table>

Endothelial cell density was measured by specular microscopy.
Follow-up

• Angles deepened with LPI and became more shallow in control group
• Vision and IOP stayed similar in both groups

<table>
<thead>
<tr>
<th>Presenting visual acuity, logarithm of the minimum angle of resolution</th>
<th>Laser peripheral iridotomy</th>
<th>Control</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline (n=889)</td>
<td>0.19 (0.17)</td>
<td>0.19 (0.17)</td>
<td>0.908</td>
</tr>
<tr>
<td>6 months (n=863)</td>
<td>0.15 (0.15)</td>
<td>0.16 (0.16)</td>
<td>0.016</td>
</tr>
<tr>
<td>18 months (n=836)</td>
<td>0.18 (0.16)</td>
<td>0.19 (0.17)</td>
<td>0.017</td>
</tr>
<tr>
<td>36 months (n=778)</td>
<td>0.21 (0.18)</td>
<td>0.22 (0.18)</td>
<td>0.093</td>
</tr>
<tr>
<td>54 months (n=695)</td>
<td>0.24 (0.18)</td>
<td>0.25 (0.19)</td>
<td>0.244</td>
</tr>
<tr>
<td>72 months (n=628)</td>
<td>0.29 (0.21)</td>
<td>0.28 (0.20)</td>
<td>0.121</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Intraocular pressure, mm Hg</th>
<th>Laser peripheral iridotomy</th>
<th>Control</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline (n=889)</td>
<td>15.07 (2.85)</td>
<td>15.09 (2.83)</td>
<td>0.673</td>
</tr>
<tr>
<td>6 months (n=863)</td>
<td>15.89 (2.66)</td>
<td>15.64 (2.64)</td>
<td><0.001</td>
</tr>
<tr>
<td>18 months (n=837)</td>
<td>14.99 (2.71)</td>
<td>14.81 (2.79)</td>
<td><0.001</td>
</tr>
<tr>
<td>36 months (n=777)</td>
<td>15.05 (2.35)</td>
<td>14.86 (2.37)</td>
<td><0.001</td>
</tr>
<tr>
<td>54 months (n=695)</td>
<td>15.76 (2.38)</td>
<td>15.59 (2.33)</td>
<td><0.001</td>
</tr>
<tr>
<td>72 months (n=628)</td>
<td>15.26 (2.47)</td>
<td>15.09 (2.44)</td>
<td><0.001</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Total angle width, score*</th>
<th>Laser peripheral iridotomy</th>
<th>Control</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline (n=889)</td>
<td>5.33 (2.37)</td>
<td>5.34 (2.40)</td>
<td>0.858</td>
</tr>
<tr>
<td>6 months (n=863)</td>
<td>10.29 (2.82)</td>
<td>4.91 (2.42)</td>
<td><0.001</td>
</tr>
<tr>
<td>18 months (n=837)</td>
<td>9.57 (2.85)</td>
<td>4.53 (2.22)</td>
<td><0.001</td>
</tr>
<tr>
<td>36 months (n=777)</td>
<td>11.47 (3.38)</td>
<td>4.74 (3.99)</td>
<td><0.001</td>
</tr>
<tr>
<td>54 months (n=695)</td>
<td>9.78 (3.59)</td>
<td>3.69 (2.60)</td>
<td><0.001</td>
</tr>
<tr>
<td>72 months (n=628)</td>
<td>9.62 (3.41)</td>
<td>3.93 (3.09)</td>
<td><0.001</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Limbal anterior chamber depth, %†</th>
<th>Laser peripheral iridotomy</th>
<th>Control</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline (n=889)</td>
<td>22.17 (7.46)</td>
<td>22.35 (7.78)</td>
<td>0.917</td>
</tr>
<tr>
<td>6 months (n=863)</td>
<td>38.33 (16.31)</td>
<td>20.10 (8.15)</td>
<td><0.001</td>
</tr>
<tr>
<td>18 months (n=837)</td>
<td>42.19 (20.75)</td>
<td>19.10 (9.80)</td>
<td><0.001</td>
</tr>
<tr>
<td>36 months (n=777)</td>
<td>38.90 (17.21)</td>
<td>19.05 (9.00)</td>
<td><0.001</td>
</tr>
<tr>
<td>54 months (n=695)</td>
<td>33.16 (14.90)</td>
<td>16.71 (9.46)</td>
<td><0.001</td>
</tr>
<tr>
<td>72 months (n=628)</td>
<td>31.85 (13.59)</td>
<td>17.01 (10.39)</td>
<td><0.001</td>
</tr>
</tbody>
</table>

*Total angle width was calculated by the sum of Shaffer grading of all four quadrants (range from 0 to 16; larger number indicates wider angle). †Limbal anterior chamber depth was evaluated by modified van Herick grading.
My take home points from ZAP

• **You** probably do too many peripheral iridotomies
• Patient population probably do not match ours
• Is 6 years long enough to look for necessity of PI?
• Have to consider in relation for timing of cataract extraction
• Have to look at each patient and talk with patients regarding R/B/A
Effectiveness of Early Lens Extraction for the treatment of Primary Angle Glaucoma: EAGLE Study

- 419 Eyes Randomized to Clear Lens Extraction versus Laser Peripheral Iridotomy
- Patient Inclusion Criteria
 - 50 years or older
 - No visually significant Cataract
 - Primary Angle Closure with IOP >30 or Primary Angle Closure Glaucoma
 - Excluded Symptomatic Cataract, past LPI or AACG
- Patient Demographics
 - Age 67 yo
 - 31% Chinese
 - 58% Women
 - IOP 30
 - Axial Length 22.6mm
 - Refraction- +1.4
 - MD of VF- -3.3 dB
EAGLE Results

- At 3Y, Eyes with Clear Lens Extraction had
 - Less Medication
 - Less likely to have glaucoma surgery
 - Better Quality of Life

Table 1: EAGLE Results

<table>
<thead>
<tr>
<th>Patient-reported NLI (n=106)</th>
<th>Laser/peripheral iridotomy (n=25)</th>
<th>Difference in change between groups (95% CI)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>205, 68-4 (12-4)</td>
<td>205, 68-4 (12-4)</td>
<td></td>
</tr>
<tr>
<td>6 months</td>
<td>182, 86-4 (10-4)</td>
<td>196, 86-3 (12-3)</td>
<td></td>
</tr>
<tr>
<td>12 months</td>
<td>188, 107 (8-8)</td>
<td>188, 107 (8-8)</td>
<td></td>
</tr>
<tr>
<td>24 months</td>
<td>172, 90.9 (10-4)</td>
<td>182, 90.9 (10-4)</td>
<td></td>
</tr>
<tr>
<td>36 months</td>
<td>185, 96.1 (12-3)</td>
<td>185, 96.1 (12-3)</td>
<td></td>
</tr>
<tr>
<td>36 months vs baseline</td>
<td>-</td>
<td>-</td>
<td><0.0001</td>
</tr>
</tbody>
</table>

Table 2: Glaucoma Utility Index

Baseline	190, 0.895 (0.015)	190, 0.895 (0.015)	
6 months	182, 0.890 (0.017)	182, 0.890 (0.017)	
12 months	184, 0.897 (0.013)	182, 0.897 (0.013)	
24 months	177, 0.893 (0.017)	182, 0.893 (0.017)	
36 months	180, 0.899 (0.012)	180, 0.899 (0.012)	
36 months vs baseline	-	-	<0.0001

Medications (eye drops)

Baseline	205, 1.0 (1-1)	205, 1.0 (1-1)	
6 months	192, 0.64 (0-7)	200, 0.6 (0-6)	
12 months	186, 0.4 (0-6)	193, 0.4 (0-6)	
24 months	177, 0.4 (0-6)	180, 0.4 (0-6)	
36 months	178, 0.4 (0-6)	181, 0.4 (0-6)	
36 months vs baseline	-	-	<0.0001

Medications (eye drops) at 36 months

0	5 (25-64%)	45 (31-39%)	
1	3 (15-6%)	62 (38-86%)	
2	1 (5-7%)	65 (21-84%)	
3	1 (5-6%)	19 (9-98%)	
6	1 (5-6%)	4 (9-98%)	
Missing	30 (14-48%)	30 (14-48%)	

Additional glaucoma surgery

- Lens extraction: 0
- Trabeculoplasty: 1 (100%) of 1
- iStent: 0
- Ahmed valve: 0

Angle closure at 36 months

- 0-4 mm: 64 (31-234)
- 4-8 mm: 17 (7-46)
- Missing: 3 (6-46)

SYNCHRONAL ANGLE CLOSURE AT 36 MONTHS

- 0-4 mm: 76 (89-45)
- 4-8 mm: 7 (9-46)
- Missing: 12 (13-58)

EUGENE AND MARILYN GLICK EYE INSTITUTE

INDIANA UNIVERSITY

School of Medicine
Complications in EAGLE Trial

- Complication rates were similar between two groups
Take Home Points from the EAGLE Trial

• Cataract Extraction can greatly improve intraocular pressure in patients with PAC and PACG
• Medication burden is less after Cataract Surgery compared with LPI
• Insurers and physicians have to adapt to considering Clear Lens Extraction as a treatment for a potentially blinding disease
Quick Question

• A 50 yo with neovascular glaucoma presents on maximum tolerated medical therapy with an IOP of 40 and a vision of 20/80. What is the most appropriate surgical therapy?
 – Trabeculectomy with mitomycin C
 – Baerveldt glaucoma drainage device
 – XEN implantation
 – Ahmed glaucoma drainage device
Ahmed Baerveldt Comparison (ABC)/Ahmed versus Baerveldt (AVB) Trial

• 514 Eyes Randomized to Ahmed FP7 versus Baerveldt 350mm tube shunt

• Patient Inclusion Criteria
 – 18 or older
 – IOP uncontrolled

• Patient Demographics
 – Age 65 yo
 – IOP 32 on 3.3 meds
 – 60% Caucasian, 19% African American
 – 50% of patient had POAG, 29% NVG, 9% Uveitis, 7% CACG
IOP in Pooled ABC/AVB Trial
Kaplan Meier Survival
Medication Usage in the ABC/AVB
Take Home Points from Trial

• Baerveldt implants had a
 – Higher likelihood of success
 – Lower intraocular pressure
 – Lower Medication burden
 – Higher incidence of complications and hypotony

• In Neovascular Glaucoma, Baerveldt had a higher risk for No Light Perception Vision
Tube Versus Trabeculectomy (TVT) Trial

- 212 Eyes Randomized to Trabeculectomy versus Baerveldt 350mm tube shunt
- Patient Inclusion Criteria
 - 18-85 yo
 - Prior CE and/or Trabeculectomy
 - IOP between 18-40
- Patient Demographics
 - Age 71 yo
 - IOP 25 on 3 meds
 - 45% Caucasian, 39% African American, 14% Hispanic
 - 81% of patient had POAG
5 Year Results of the TVT
Survival Curve of the TVT
Take home messages from the TVT

- Trabeculectomy was more likely to fail at 5 years
- Trabeculectomy had a greater chance for reoperation (29% versus 9%) and hypotony (31% versus 13%)
- Tube Shunt Surgery has a lower risk of serious complications
- Trabeculectomy achieves lower pressure with similar medication usage
- Perhaps Trabeculectomy had a higher risk of failure since 55% had undergone prior Trabeculectomy
Quick Question

• A 65 year old surgical naïve patient presents with progressive severe glaucoma despite SLT x 2 on maximal tolerated medical therapy with an IOP of 18. What is the most appropriate surgical therapy?
 – Trabeculectomy with Mitomycin C
 – Baeveldt Glaucoma Drainage Implant
 – iStent inject
 – Ahmed Glaucoma Drainage Implant
Primary Tube versus Trabeculectomy (PTVT) Trial

- 242 Eyes Randomized to Trabeculectomy versus Baerveldt 350mm tube shunt
- Patient Inclusion Criteria
 - 18-85 yo
 - No Prior Intraocular Surgery
 - IOP between 18-40
- Patient Demographics
 - Age 61 yo
 - IOP 24 on 3 meds
 - 40% Caucasian, 48% African American, 6% Hispanic, 6% Asian
 - 90% of patient had POAG
3 Year Results of PTVT Trial
3-Year Survival Curve of the PTVT

<table>
<thead>
<tr>
<th>Follow-up (Months)</th>
<th>Tube Group</th>
<th>Trabeculectomy Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>125</td>
<td>117</td>
</tr>
<tr>
<td>6</td>
<td>111</td>
<td>111</td>
</tr>
<tr>
<td>12</td>
<td>94</td>
<td>101</td>
</tr>
<tr>
<td>18</td>
<td>87</td>
<td>88</td>
</tr>
<tr>
<td>24</td>
<td>77</td>
<td>81</td>
</tr>
<tr>
<td>30</td>
<td>70</td>
<td>73</td>
</tr>
<tr>
<td>36</td>
<td>67</td>
<td>73</td>
</tr>
</tbody>
</table>
My take home points from the PTVT

• At 3 years, Tube shunt surgeries have a
 - greater risk of failure (37% versus 28%)
 - higher IOP (14 versus 12 mm Hg)
 - higher rate of reoperation (37% versus 27%)
 - greater need for medication (2 versus 1)
 - lower postoperative complications (34% versus 48%)

• Post Hoc comment
 • Tube Shunts performed poorly at low starting IOP
A Prospective Randomized Trial comparing Hydrus and iStent microinvasive glaucoma surgery implants for standalone treatment for Open-Angle Glaucoma- COMPARE Study

- 152 Eyes Randomized to Hydrus versus two iStent
- Patient Inclusion Criteria
 - 45-84 yo
 - Open Angle Glaucoma- allowed PXF, PDG
 - IOP between 23-39 (post washout)
- Patient Demographics
 - Age 67 yo
 - Female 56%
 - IOP 19 on 2.6 meds
 - 64% European, 3% African, 18% Hispanic, 15% Asian
 - 94% of patient had POAG
 - MD- -6.2 dB
 - 64% Phakic
Intraocular Pressure and Medication Use

A. Intraocular Pressure

B. Medications

Postoperative Day

Hydrus - 2 iStents

Mean Count

0.6 p<0.001

1.1

0.8 p<0.001

1.5

1.7

1.0

p<0.001
Safety

- Both Hydrus and iStent had excellent safety profiles
Take Home Conclusions from COMPARE Trial

- Both offer good iop lowering effect with a reduction in patient medication burden, with Hydrus achieving lower intraocular pressure with less medication
- iStent studied is ”older” generation
- Both surgeries with excellent safety profiles
Tips in Analyzing Clinical Trials and Incorporating Results into our practices

- Try to match patients with clinical scenario when trying to assess recommendations to patient
- Realize studies all come with limitations as to protocol variations
- Study Results are dependent on Study Populations
- Surgeon expertise and experience which may dictate superior results